OFFSET
0,1
FORMULA
a(n) ~ c * 2^(n^2/2 + 2*n) * Pi^(n^2/2 + n) * n^(2*n^3/3 + 2*n^2 + 11*n/6 + 5/2) / exp(8*n^3/9 + 2*n^2 + n), where c = A324569 = 62.14398692334529025548974541735...
a(n) = a(n-1) * A323717(n)^2 / (2*n!). - Vaclav Kotesovec, Mar 28 2019
MATHEMATICA
Table[Product[i! + j!, {i, 0, n}, {j, 0, n}], {n, 0, 7}]
Clear[a]; a[n_] := a[n] = If[n == 0, 2, a[n-1] * Product[k! + n!, {k, 0, n}]^2 / (2*n!)]; Table[a[n], {n, 0, 7}] (* Vaclav Kotesovec, Mar 27 2019 *)
Table[Product[Product[k! + j!, {k, 0, j}], {j, 1, n}]^2 / (2^(n-1) * BarnesG[n + 2]), {n, 0, 7}] (* Vaclav Kotesovec, Mar 27 2019 *)
PROG
(Python)
from math import prod, factorial as f
def a(n): return prod(f(i)+f(j) for i in range(n) for j in range(n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Feb 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 06 2019
STATUS
approved