login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306678 Number of distinct triangles with prime sides and largest side = prime(n). 4
1, 3, 4, 6, 7, 11, 13, 18, 21, 22, 29, 30, 37, 46, 53, 56, 60, 71, 75, 87, 101, 105, 118, 124, 123, 139, 157, 173, 193, 209, 186, 207, 219, 244, 241, 264, 277, 291, 318, 329, 344, 371, 373, 405, 433, 465, 447, 440, 474, 511, 545, 563, 597, 602, 623, 645 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..56.

FORMULA

a(n) = A306676(n) + A306677(n).

EXAMPLE

For n=1, there is 1 triangle: {2, 2, 2}, with largest side prime(1) = 2.

For n=2, there are 3 triangles: {2, 2, 3}, {2, 3, 3}, {3, 3, 3}, with largest side prime(2) = 3.

For n=4, there are 6 triangles :{2, 7, 7}, {3, 5, 7}, {3, 7, 7}, {5, 5, 7}, {5, 7, 7}, {7, 7, 7}, with largest side prime(4) = 7. Total = 6 = a(4).

For n=5, largest side = prime(n) = 11. Triangles are {{2, 11, 11}, {3, 11, 11}, {5, 7, 11}, {5, 11, 11}, {7, 7, 11}, {7, 11, 11}, {11, 11, 11}}. Total = 7 = a(5).

MAPLE

#nType=1 for acute triangles, nType=2 for obtuse triangles

#nType=0 for both triangles

CountPrimeTriangles := proc (n, nType := 1)

  local aa, oo, j, k, sg, a, b, c, tt, lAcute;

  aa := {}; oo := {};

  a := ithprime(n);

  for j from n by -1 to 1 do

    b := ithprime(j);

    for k from j by -1 to 1 do

      c := ithprime(k);

      if a < b+c and abs(b-c) < a and b < c+a and abs(c-a) < b and c < a+b and abs(a-b) < c then

        lAcute := evalb(0 < b^2+c^2-a^2);

        tt := sort([a, b, c]);

        if lAcute then aa := {op(aa), tt} else oo := {op(oo), tt} end if

      end if

    end do

  end do;

  return sort(`if`(nType = 1, aa, `if`(nType = 2, oo, `union`(aa, oo))))

end proc:

CROSSREFS

Cf. A306673, A306674, A306676, A306677.

Sequence in context: A011975 A202112 A079249 * A075434 A085253 A207525

Adjacent sequences:  A306675 A306676 A306677 * A306679 A306680 A306681

KEYWORD

nonn

AUTHOR

César Eliud Lozada, Mar 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 09:56 EST 2019. Contains 329362 sequences. (Running on oeis4.)