%I #17 Mar 05 2019 01:43:27
%S 3,6,2,7,4,3,20,8,3,2,13,20,5,6,3,21,7,10,4,4,2,15,42,7,6,9,3,3,54,16,
%T 21,12,5,8,6,2,41,13,13,42,7,20,5,4,3,110,40,27,16,14,6,20,4,3,2,27,
%U 55,21,54,23,8,13,10,9,6,3,156,25,55,11
%N Array read by antidiagonals: A(n,k) (n,k >= 2) is the base-n state complexity of the partitioned finite deterministic automaton (PFDA) for the periodic sequence (123..k)*.
%C Rows are ultimately periodic.
%H Charlie Neder, <a href="/A306640/b306640.txt">First 45 antidiagonals, flattened</a>
%H Klaus Sutner and Sam Tetruashvili, <a href="http://www.cs.cmu.edu/~sutner/papers/auto-seq.pdf">Inferring Automatic Sequences</a>.
%F A(n,n^k) = Sum_{i=0..k} n^i.
%F A(n+1,n) = n.
%F It also appears that A(n-1,n) = 2n.
%e Array begins:
%e 3 2 3 2 3
%e 6 4 3 6 4
%e 7 8 5 4 9 ...
%e 20 20 10 6 5
%e 13 7 7 12 7
%e ...
%Y Columns: A217519-A217521 (n = 2-4), A247566-A247581 (n = 5-20).
%Y Rows: A217515-A217518 (k = 3-6), A247387-A247391 (k = 7-11), A247434-A247442 (k = 12-20).
%K nonn,tabl
%O 1,1
%A _Charlie Neder_, Mar 02 2019