login
A306620
Decimal expansion of a constant related to the asymptotics of A324437.
3
2, 3, 4, 5, 1, 5, 8, 4, 4, 5, 1, 4, 0, 4, 2, 7, 9, 2, 8, 1, 8, 0, 7, 1, 4, 3, 3, 1, 7, 5, 0, 0, 5, 1, 8, 6, 6, 0, 6, 9, 6, 2, 9, 3, 9, 4, 4, 9, 6, 1, 0, 3, 9, 5, 5, 3, 2, 4, 5, 8, 2, 3, 6, 8, 3, 6, 6, 1, 0, 9, 9, 4, 1, 7, 0, 2, 5, 3, 0, 3, 2, 4, 1, 6, 1, 4, 5, 1, 7, 7, 7, 4, 7, 0, 5, 4, 3, 0, 2, 6, 0, 4, 9, 6, 6, 0
OFFSET
0,1
LINKS
FORMULA
Equals limit_{n->oo} A324437(n) / (2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1)).
Equals limit_{n->oo} n*(Product_{i=1..n, j=1..n} ((i/n)^4 + (j/n)^4)) / exp(6*n + n*(n+1)*Integral_{x=0..1, y=0..1} log(x^4 + y^4) dy dx). - Vaclav Kotesovec, Dec 04 2023
EXAMPLE
0.234515844514042792818071433175005186606962939449610395532458236836610994170253...
CROSSREFS
Sequence in context: A355008 A050269 A097151 * A071500 A071516 A279477
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 01 2019
STATUS
approved