OFFSET
0,1
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..158
FORMULA
Equals limit_{n->oo} A324437(n) / (2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1)).
Equals limit_{n->oo} n*(Product_{i=1..n, j=1..n} ((i/n)^4 + (j/n)^4)) / exp(6*n + n*(n+1)*Integral_{x=0..1, y=0..1} log(x^4 + y^4) dy dx). - Vaclav Kotesovec, Dec 04 2023
EXAMPLE
0.234515844514042792818071433175005186606962939449610395532458236836610994170253...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 01 2019
STATUS
approved