login
A306554
Expansion of the 10-adic cube root of 1/13, that is, the 10-adic integer solution to x^3 = 1/13.
4
3, 5, 6, 4, 1, 9, 3, 2, 8, 7, 4, 0, 8, 3, 6, 5, 7, 7, 0, 9, 8, 2, 7, 5, 1, 4, 8, 0, 9, 5, 1, 6, 0, 6, 2, 1, 3, 2, 2, 6, 4, 2, 7, 0, 6, 8, 6, 1, 3, 3, 2, 2, 0, 0, 1, 5, 6, 7, 9, 6, 2, 7, 8, 4, 2, 6, 3, 6, 3, 0, 1, 0, 4, 5, 5, 6, 6, 1, 3, 5, 4, 3, 3, 3, 1, 7, 0
OFFSET
1,1
COMMENTS
10's complement of A306555.
LINKS
FORMULA
a(n) = 9 - A306555(n) for n >= 2.
EXAMPLE
3^3 == 7 == 1/13 (mod 10).
53^3 == 77 == 1/13 (mod 100).
653^3 == 77 == 1/13 (mod 1000).
4653^3 == 3077 == 1/13 (mod 10000).
...
...047823914653^3 = ...923076923077 = 1 + (...999999999999)*(12/13) = 1 - 12/13 = 1/13.
MAPLE
op([1, 3], padic:-rootp(13*x^3-1, 10, 100)); # Robert Israel, Mar 24 2019
PROG
(PARI) seq(n)={Vecrev(digits(lift(chinese( Mod((1/13 + O(5^n))^(1/3), 5^n), Mod((1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.
CROSSREFS
10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), this sequence (p=1).
Sequence in context: A218802 A236101 A203802 * A078064 A091517 A356376
KEYWORD
nonn,base
AUTHOR
Jianing Song, Feb 23 2019
STATUS
approved