login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = gcd(n!^2+1, sigma(n!)), where sigma() denotes the sum of the divisors.
0

%I #25 Feb 28 2024 10:46:14

%S 1,1,1,1,1,13,1,17,1,1,1,1,1,1,1,1,1,1,1,1,61,1,1,1,1,1,1,1,1,61,1,1,

%T 1,193,1,1,1,757,61,1,1,1,1,1,1,1,1,1,1,1,1,1,1,109,1,1,1,181,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,113

%N a(n) = gcd(n!^2+1, sigma(n!)), where sigma() denotes the sum of the divisors.

%C A sequence that produces primes.

%C A counterexample is found at n=7880, here the gcd is 380927609 = 15761*24169.

%C Interesting properties may be found in this sequence, for example many primes are 2n+1.

%F a(n) = gcd(A020549(n), A062569(n)).

%t Table[GCD[(n!)^2+1,DivisorSigma[1,n!]],{n,90}] (* _Harvey P. Dale_, Jun 03 2021 *)

%o (PARI) a(n) = gcd(n!^2+1, sigma(n!)); \\ _Michel Marcus_, Feb 20 2019

%Y Cf. A000203, A020549, A062569.

%K nonn

%O 1,6

%A _Daoudi RĂ©doane_, Feb 20 2019

%E More terms from _Michel Marcus_, Feb 20 2019