login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of 1/(x^6+2*x^5-x^4-4*x^3-x^2-2*x+1).
2

%I #17 Feb 21 2019 09:48:59

%S 1,2,5,16,46,128,366,1048,2983,8498,24235,69088,196924,561360,1600252,

%T 4561680,13003565,37068242,105667377,301217072,858654442,2447694896,

%U 6977439850,19890006440,56698785235,161626505250,460735217111,1313379512256,3743941595128,10672542499296

%N Expansion of 1/(x^6+2*x^5-x^4-4*x^3-x^2-2*x+1).

%H Seiichi Manyama, <a href="/A306504/b306504.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,4,1,-2,-1).

%F a(n) = 2*a(n-1) + a(n-2) + 4*a(n-3) + a(n-4) - 2*a(n-5) - a(n-6).

%o (PARI) N=66; x='x+O('x^N); Vec(1/(x^6+2*x^5-x^4-4*x^3-x^2-2*x+1))

%Y Self-convolution of A306463.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Feb 20 2019