This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306479 Squarefree composite numbers m such that rad(p-1) = rad(m-1) for every prime p dividing m. 1
 1729, 46657, 1525781251 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(1) and a(2) are Carmichael numbers (no more such Carmichael numbers up to 10^18), a(3) = (5^7-4)*(5^7-1)/4 is semiprime. The semiprimes of the form (b^p - (b-1))*(b^p - 1)/(b-1) of this sequence include (3^541-2)*(3^541-1)/2, (5^7-4)*(5^7-1)/4, (5^47-4)*(5^47-1)/4, (17^11-16)*(17^11-1)/16, (65^19-64)*(65^19-1)/64, (129^5-128)*(129^5-1)/128, ... The following semiprimes also belong to this sequence: 763546828801, 6031047559681, 184597450297471, 732785991945841, 18641350656000001, 55212580317094201. - Daniel Suteu, Feb 18 2019 LINKS Carlos Rivera, Puzzle 969. Rad(m - 1) = Rad(phi(m)), The Prime Puzzles & Problems Connection. PROG (PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947 isok(m) = {if ((m==1) || isprime(m) || !issquarefree(m), return(0)); my(f = factor(m)[, 1], r = rad(m-1)); for (i=1, #f, if (rad(f[i]-1) != r, return (0)); ); return (1); } \\ Michel Marcus, Feb 18 2019 CROSSREFS Cf. A002997, A007947, A306478 (phi-radical numbers). Sequence in context: A284671 A265328 A265628 * A272798 A212920 A317126 Adjacent sequences:  A306476 A306477 A306478 * A306480 A306481 A306482 KEYWORD nonn,more AUTHOR Amiram Eldar and Thomas Ordowski, Feb 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:10 EDT 2019. Contains 328373 sequences. (Running on oeis4.)