login
A306370
Primes p such that none of p+6, p+12, p+18, p+30 is prime.
1
2, 3, 463, 499, 521, 719, 773, 787, 883, 887, 1109, 1129, 1319, 1327, 1373, 1489, 1699, 1733, 1787, 1823, 1879, 1951, 2003, 2029, 2089, 2153, 2179, 2273, 2357, 2389, 2477, 2557, 2593, 2753, 2917, 3041, 3121, 3167, 3257, 3391, 3413, 3467, 3491, 3557, 3623, 3677, 3719, 3769, 3853, 3943, 3947, 3967
OFFSET
1,1
COMMENTS
Includes all primes == 463 (mod 7735).
LINKS
Mathematics StackExchange, If P is prime then is P+6 prime
EXAMPLE
463 is in the sequence because it is prime but 463+6, 463+12, 463+18 and 463+30 are not.
MAPLE
select(p -> isprime(p) and not ormap(isprime, [p+6, p+12, p+18, p+30]),
[2, seq(p, p=3..10000, 2)]);
MATHEMATICA
Select[Prime[Range[600]], NoneTrue[#+{6, 12, 18, 30}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 23 2021 *)
CROSSREFS
Sequence in context: A066849 A071219 A109855 * A355644 A128874 A196070
KEYWORD
nonn
AUTHOR
Robert Israel, Feb 10 2019
STATUS
approved