OFFSET
1,1
COMMENTS
A007310(a(n) + 1) is always a multiple of 19.
It equals 5 when n is a term in A273669.
It equals 7 when n is congruent to 3 or 12 (mod 14) but not a term in A273669.
It equals 11 when n is congruent to 4 or 19 (mod 22) but not a case where it equals 5 or 7.
It equals 13 when n is congruent to 5 or 22 (mod 26) (one more than a term in A306285) but not a case where it equals 5, 7, or 11.
It equals 17 when n is congruent to 6 or 29 (mod 34) but not a case where it equals 5, 7, 11, or 13.
For all other cases, it equals 19.
a(n) and (n - 1) have the same remainder (mod 6) (see A010875).
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
G.f.: x*(6 + 25*x + 7*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Feb 09 2019
a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3.
a(n) = 19*n - 10 + 3*(-1)^n. - Wesley Ivan Hurt, Mar 10 2019
a(n) = 19*n - 13 when n is odd and 19*n - 7 when n is even.
a(n) = 19*n - (A040031(n + 1) + 1).
E.g.f.: 7 + (19*x - 10)*exp(x) + 3*exp(-x). - David Lovler, Sep 10 2022
MAPLE
seq(seq(38*i+j, j=[6, 31]), i=0..200);
MATHEMATICA
Select[Range[200], MemberQ[{6, 31}, Mod[#, 38]] &]
Union[38Range[30] - 32, 38Range[30] - 7] (* Alonso del Arte, Feb 08 2019 *)
PROG
(PARI) for(n=6, 905, if((n%38==6) || (n%38==31), print1(n, ", ")))
(PARI) Vec(x*(6 + 25*x + 7*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 09 2019
(Scala) (6 to 1108 by 38).union(31 to 1133 by 38).sorted // Alonso del Arte, Feb 08 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Davis Smith, Feb 07 2019
STATUS
approved