login
If n = Product (p_j^k_j) then a(n) = Product (p_j)^Sum (k_j).
1

%I #5 Feb 21 2019 04:16:55

%S 1,2,3,4,5,36,7,8,9,100,11,216,13,196,225,16,17,216,19,1000,441,484,

%T 23,1296,25,676,27,2744,29,27000,31,32,1089,1156,1225,1296,37,1444,

%U 1521,10000,41,74088,43,10648,3375,2116,47,7776,49,1000,2601,17576,53,1296,3025,38416,3249,3364,59,810000

%N If n = Product (p_j^k_j) then a(n) = Product (p_j)^Sum (k_j).

%F a(n) = rad(n)^bigomega(n) = A007947(n)^A001222(n).

%e a(12) = a(2^2 * 3^1) = (2 * 3)^(2 + 1) = 216.

%t Table[Last[Select[Divisors[n], SquareFreeQ]]^PrimeOmega[n], {n, 60}]

%Y Cf. A000961 (fixed points), A001222, A007947, A088865, A285769, A303277, A303278, A306328.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Feb 07 2019