This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306253 Largest primitive root mod A033948(n). 3
 0, 1, 2, 3, 3, 5, 5, 5, 7, 8, 11, 5, 14, 11, 15, 19, 21, 23, 19, 23, 27, 24, 31, 35, 33, 35, 34, 43, 45, 47, 47, 51, 47, 55, 56, 59, 55, 63, 69, 68, 69, 77, 77, 75, 80, 77, 86, 91, 92, 89, 99, 101, 103, 104, 103, 110, 115, 117, 115, 123, 118, 128, 117, 134, 135 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Let U(k) denote the multiplicative group mod k. a(n) = largest generator for U(A033948(n)). - N. J. A. Sloane, Mar 10 2019 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE For n=2, U(n) is generated by 1. For n=14, A033948(14) = 18, and, U(n) is generated by both 5 and 11; here we select the largest generator, 11, so a(14) = 11. MAPLE f:= proc(b) local x, t;   t:= numtheory:-phi(b);   for x from b-1 by -1 do if igcd(x, b) = 1 and numtheory:-order(x, b)=t then return x fi od end proc: f(1):= 0: cands:= select(t -> t=1 or numtheory:-primroot(t) <> FAIL, [\$1..1000]): map(f, cands); # Robert Israel, Mar 10 2019 PROG def gcd(x, y):     # Euclid's Algorithm     while(y):         x, y = y, x % y     return x roots = [] for n in xrange(2, 140):     # find U(n)     un = [i for i in xrange(n, 0, -1) if (gcd(i, n) is 1)]     # for each element in U(n), check if it's a generator     order = len(un)     is_cyclic = False     for cand in un:         is_gen = True         run = 1         # If it cand^x = 1 for some x < order, it's not a generator         for _ in xrange(order-1):             run = (run * cand) % n             if run == 1:                 is_gen = False                 break         if is_gen:             roots.append(cand)             is_cyclic = True             break print "roots:", roots CROSSREFS See A306252 for smallest roots and A033948 for the sequence of numbers that have a primitive root. Sequence in context: A098567 A086162 A036703 * A117629 A081165 A289749 Adjacent sequences:  A306250 A306251 A306252 * A306254 A306255 A306256 KEYWORD nonn AUTHOR Charles Paul, Feb 01 2019 EXTENSIONS Edited by N. J. A. Sloane, Mar 10 2019. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 20:13 EDT 2019. Contains 328272 sequences. (Running on oeis4.)