login
a(n) = primorial prime(n)#/prime(n - 1).
6

%I #38 Jan 10 2021 13:30:55

%S 3,10,42,330,2730,39270,570570,11741730,281291010,6915878970,

%T 239378649510,8222980095330,319091739796830,14299762385778870,

%U 693386350578511590,36278497172720993190,1987938667108592728530,128824943460332246817690,8327475076517894939812170,573657473228859495079173570

%N a(n) = primorial prime(n)#/prime(n - 1).

%C Let primorial p_n# = A002110(n) and prime(n - 1) = A000040(n - 1). This sequence can be defined alternatively as p_(n - 2) * prime(n).

%H Michael De Vlieger, <a href="/A306237/b306237.txt">Table of n, a(n) for n = 2..351</a>

%H Michael De Vlieger, <a href="/A306237/a306237.png">Chart plotting terms m in A306237 at (x, y) where x = A000720(A006530(m)) and y = A000010(m)/m</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F a(n) = A002110(n)/A000040(n - 1).

%e a(2) = (2 * 3)/prime(2 - 1) = 6/2 = 3.

%e a(3) = (2*3*5)/prime(3 - 1) = 30/3 = 10.

%p a:= proc(n) option remember; `if`(n=2, 3,

%p a(n-1)*(p-> p(n-2)/p(n-1)*p(n))(ithprime))

%p end:

%p seq(a(n), n=2..23); # _Alois P. Heinz_, Jan 10 2021

%t Array[Product[Prime@ i, {i, #}]/Prime[# - 1] &, 20, 2]

%o (PARI) a(n) = prod(k=1, n, prime(k))/prime(n-1); \\ _Michel Marcus_, Apr 13 2019

%Y Cf. A000040, A002110.

%K nonn,easy

%O 2,1

%A _Michael De Vlieger_, Apr 10 2019