login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unlabeled rooted semi-identity trees with n nodes.
24

%I #17 May 10 2021 07:40:41

%S 0,1,1,2,4,8,18,41,98,237,591,1488,3805,9820,25593,67184,177604,

%T 472177,1261998,3388434,9136019,24724904,67141940,182892368,499608724,

%U 1368340326,3756651116,10336434585,28499309291,78727891420,217870037932,603934911859,1676720329410

%N Number of unlabeled rooted semi-identity trees with n nodes.

%C A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

%H Alois P. Heinz, <a href="/A306200/b306200.txt">Table of n, a(n) for n = 0..2166</a>

%e The a(1) = 1 through a(7) = 8 trees:

%e o (o) (oo) (ooo) (oooo) (ooooo)

%e ((o)) ((oo)) ((ooo)) ((oooo))

%e (o(o)) (o(oo)) (o(ooo))

%e (((o))) (oo(o)) (oo(oo))

%e (((oo))) (ooo(o))

%e ((o(o))) (((ooo)))

%e (o((o))) ((o)(oo))

%e ((((o)))) ((o(oo)))

%e ((oo(o)))

%e (o((oo)))

%e (o(o(o)))

%e (oo((o)))

%e ((((oo))))

%e (((o(o))))

%e ((o)((o)))

%e ((o((o))))

%e (o(((o))))

%e (((((o)))))

%p b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,

%p add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i))

%p end:

%p a:= n-> `if`(n=0, 0, b(n-1$2)):

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Jan 29 2019

%t ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}];

%t Table[Length[ursit[n]],{n,10}]

%t (* Second program: *)

%t b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,

%t Sum[b[n - i*j, i - 1]*Binomial[a[i], j], {j, 0, n/i}]];

%t a[n_] := If[n == 0, 0, b[n - 1, n - 1]];

%t a /@ Range[0, 35] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *)

%Y Cf. A000081, A004111, A276625, A301700, A306201, A316471, A316474, A317708, A317712, A317718.

%K nonn

%O 0,4

%A _Gus Wiseman_, Jan 29 2019

%E More terms from _Alois P. Heinz_, Jan 29 2019