login
a(n) is the n-th term of the inverse Euler transform of j-> n^(j-1).
4

%I #20 Jan 06 2020 09:12:29

%S 1,1,6,42,420,5155,77658,1376340,28133616,651317463,16846515510,

%T 481472570920,15067838554860,512473599799551,18821719654854998,

%U 742395982266536520,31299550394528466960,1404629090174946183156,66851805805525048040334,3363381327122496643643628

%N a(n) is the n-th term of the inverse Euler transform of j-> n^(j-1).

%H Alois P. Heinz, <a href="/A306173/b306173.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) ~ (1 - exp(-1)) * n^(n-1). - _Vaclav Kotesovec_, Oct 08 2019

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(binomial(g(i, k)+j-1, j)*b(n-i*j, i-1,k), j=0..n/i)))

%p end:

%p g:= proc(n, k) option remember; k^(n-1)-b(n, n-1, k) end:

%p a:= n-> g(n$2):

%p seq(a(n), n=1..21);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i, k] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];

%t g[n_, k_] := g[n, k] = k^(n - 1) - b[n, n - 1, k];

%t a[n_] := g[n, n];

%t a /@ Range[21] (* _Jean-François Alcover_, Jan 06 2020, after _Alois P. Heinz_ *)

%Y Main diagonal of A065177.

%Y Cf. A075147, A316073.

%K nonn

%O 1,3

%A _Alois P. Heinz_, Jun 23 2018