login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306090 G.f. A(x) satisfies: (1 + A(x))^A(x) = (1 + x)^x ; this sequence gives the numerators of the coefficients of x^n in g.f. A(x). 9
-1, 1, -1, 1, -1, 143, -79, 8483, -2953, 391753, -77983, 20963473, -182269, 192178874539, -355629691849, 248105704337, -206101262483, 253628381647657, -222936799599583, 37078279922025269, -43439069697425189, 1498102421014867632661, -951127545430874789837, 375811649512893381826067, -18430176119809328448967 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

The denominators of the coefficients in the g.f. A(x) are given by A306091.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..300

FORMULA

G.f. A(x) = Sum_{n>=0} A306090(n)/A306091(n) * x^n satisfies:

(1) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + k*A(x)  =  1.

(2) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + (k - p)*A(x)  =  (1 + x)^p.

(3) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + k*A(x)  =  (1 + A(x))^m.

(4) Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k - m)*x + (k - p)*A(x)  =  (1+x)^p * (1 + A(x))^m.

(5) A(A(x)) = x.

(6) (1 + A(x))^A(x) = (1 + x)^x.

(7) Sum_{n>=1} (-A(x))^(n+1) / n  =  x*log(1+x).

(8) Let F(x,y) = Series_Reversion( (exp(-x*y) - exp(-x))/(1-y) ), where the inverse is taken wrt x, and let F'(x,y) = d/dx F(x,y), then F'(x, A(x)/x) = 1 (derived from Peter Bala's g.f. for A067948).

EXAMPLE

G.f.: A(x) = -x + 1/2*x^2 - 1/4*x^3 + 1/6*x^4 - 1/8*x^5 + 143/1440*x^6 - 79/960*x^7 + 8483/120960*x^8 - 2953/48384*x^9 + 391753/7257600*x^10 - 77983/1612800*x^11 + 20963473/479001600*x^12 - 182269/4561920*x^13 + 192178874539/5230697472000*x^14 - 355629691849/10461394944000*x^15 + 248105704337/7846046208000*x^16 - 206101262483/6974263296000*x^17 + 253628381647657/9146248151040000*x^18 - 222936799599583/8536498274304000*x^19 + 37078279922025269/1502674769756160000*x^20 + ... + A306090(n)/A306091(n)*x^n + ...

such that

(E.1) 1  =  1  +  (x + A(x))  +  (x + 2*A(x))*(2*x + A(x))/2!  +  (x + 3*A(x))*(2*x + 2*A(x))*(3*x + A(x))/3!  +  (x + 4*A(x))*(2*x + 3*A(x))*(3*x + 2*A(x))*(4*x + A(x))/4!  +  (x + 5*A(x))*(2*x + 4*A(x))*(3*x + 3*A(x))*(4*x + 2*A(x))*(5*x + A(x))/5! + ...

(E.2) (1 + x)^p  =  1  +  (x + (1-p)*A(x))  +  (x + (2-p)*A(x))*(2*x + (1-p)*A(x))/2!  +  (x + (3-p)*A(x))*(2*x + (2-p)*A(x))*(3*x + (1-p)*A(x))/3!  +  (x + (4-p)*A(x))*(2*x + (3-p)*A(x))*(3*x + (2-p)*A(x))*(4*x + (1-p)*A(x))/4! + ...

(E.3) (1 + A(x))^m  =  1  +  ((1-m)*x + A(x))  +  ((1-m)*x + 2*A(x))*((2-m)*x + A(x))/2!  +  ((1-m)*x + 3*A(x))*((2-m)*x + 2*A(x))*((3-m)*x + A(x))/3!  +  ((1-m)*x + 4*A(x))*((2-m)*x + 3*A(x))*((3-m)*x + 2*A(x))*((4-m)*x + A(x))/4! + ...

FUNCTIONAL EQUATION.

The series A(x) satisfies:

(E.4) (1 + A(x))^A(x) = (1 + x)^x  =  1 + x^2 - 1/2*x^3 + 5/6*x^4 - 3/4*x^5 + 33/40*x^6 - 5/6*x^7 + 2159/2520*x^8 - 209/240*x^9 + ...

GENERATING METHOD.

Although the functional equation (1 + A(x))^A(x) = (1 + x)^x has an infinite number of solutions, one may arrive at the g.f. A(x) by the following iteration.

If we start with A = -x, and iterate

(E.5) A = (A + x*log(1 + x)/log(1 + A))/2

then A will converge to g.f. A(x).

SPECIFIC VALUES.

The series A(x) diverges at x = -1. Here we evaluate some specific values.

A(t) = 1 at t = A(1) = -0.653676637721419077935143447819113227...

A(t) = 1/2 at t = A(1/2) = -0.398639649051906807220717042823223882...

A(t) = 1/3 at t = A(1/3) = -0.285386940618446074866834432180324876...

A(t) = 1/4 at t = A(1/4) = -0.222107177448605275724475246853117193...

A(t) = -1/2 at t = A(-1/2) = 0.673256694764839886028076283033520406...

A(t) = -1/3 at t = A(-1/3) = 0.400909109269336524244889643832206510...

A(t) = -1/4 at t = A(-1/4) = 0.285959998501428938843181474481790362...

MATHEMATICA

nmax = 25; sol = {a[1] -> -1};

Do[A[x_] = Sum[a[k] x^k, {k, 1, n}] /. sol; eq = CoefficientList[(1 + A[x])^A[x] - (1 + x)^x + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax + 1}];

sol /. Rule -> Set;

a /@ Range[1, nmax] // Numerator (* Jean-Fran├žois Alcover, Nov 02 2019 *)

PROG

(PARI) /* From Functional Equation (1 + A(x))^A(x) = (1 + x)^x */

{a(n) = my(A = -x +x*O(x^n)); for(i=1, n, A = (A + x*log(1+x +x*O(x^n))/log(1+A))/2 ); numerator( polcoeff(A, n) )}

for(n=1, 40, print1(a(n), ", "))

CROSSREFS

Cf. A067948, A306091 (denominators), A306092, A304866.

Cf. A306066.

Sequence in context: A200557 A077494 A217142 * A296887 A293755 A160781

Adjacent sequences:  A306087 A306088 A306089 * A306091 A306092 A306093

KEYWORD

sign,frac,nice

AUTHOR

Paul D. Hanna, Jun 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)