%I #4 Jun 18 2018 07:37:58
%S 16,120,439,1962,12349,66149,321707,1803281,9990733,52730335,
%T 286812695,1572439123,8496841932,46112314659,251332660149,
%U 1365232944075,7416321137104,40346486920331,219359763562029,1192343008712225
%N Number of nX5 0..1 arrays with every element unequal to 0, 1, 2, 3, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 5 of A306053.
%H R. H. Hardin, <a href="/A306050/b306050.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A306050/a306050.txt">Empirical recurrence of order 85</a>
%F Empirical recurrence of order 85 (see link above)
%e Some solutions for n=5
%e ..0..1..0..1..1. .0..0..0..0..1. .0..1..1..1..1. .0..0..0..0..1
%e ..1..1..0..0..1. .0..0..0..0..0. .0..0..1..0..0. .0..0..0..1..1
%e ..1..1..1..1..1. .0..1..0..0..0. .1..1..1..0..1. .0..1..0..0..0
%e ..1..1..1..1..1. .1..1..0..1..0. .1..1..1..1..1. .1..0..0..1..0
%e ..1..1..1..1..1. .1..1..1..1..0. .0..1..1..1..1. .1..0..0..0..1
%Y Cf. A306053.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jun 18 2018