The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306023 Stirling transform of partitions into distinct parts (A000009). 3
 1, 1, 2, 6, 22, 89, 391, 1875, 9822, 55817, 340535, 2208681, 15118109, 108677575, 817914056, 6431115486, 52741729600, 450432487463, 3999401133601, 36853795902353, 351799243932131, 3472526583025397, 35382850151528847, 371592232539942447, 4016792440158613798 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Eric Weisstein's World of Mathematics, Stirling Transform. FORMULA a(n) = Sum_{k=0..n} Stirling2(n,k)*A000009(k). MAPLE b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)     end: a:= n-> add(b(j)*Stirling2(n, j), j=0..n): seq(a(n), n=0..30);  # Alois P. Heinz, Jun 17 2018 MATHEMATICA Table[Sum[StirlingS2[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 25}] CROSSREFS Cf. A000009, A305550, A306022. Sequence in context: A165544 A150268 A165545 * A150269 A199822 A150270 Adjacent sequences:  A306020 A306021 A306022 * A306024 A306025 A306026 KEYWORD nonn AUTHOR Vaclav Kotesovec, Jun 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 04:04 EDT 2021. Contains 342974 sequences. (Running on oeis4.)