|
|
A306023
|
|
Stirling transform of partitions into distinct parts (A000009).
|
|
3
|
|
|
1, 1, 2, 6, 22, 89, 391, 1875, 9822, 55817, 340535, 2208681, 15118109, 108677575, 817914056, 6431115486, 52741729600, 450432487463, 3999401133601, 36853795902353, 351799243932131, 3472526583025397, 35382850151528847, 371592232539942447, 4016792440158613798
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..24.
Eric Weisstein's World of Mathematics, Stirling Transform.
|
|
FORMULA
|
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000009(k).
|
|
MAPLE
|
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> add(b(j)*Stirling2(n, j), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2018
|
|
MATHEMATICA
|
Table[Sum[StirlingS2[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 25}]
|
|
CROSSREFS
|
Cf. A000009, A305550, A306022.
Sequence in context: A165544 A150268 A165545 * A150269 A199822 A150270
Adjacent sequences: A306020 A306021 A306022 * A306024 A306025 A306026
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Jun 17 2018
|
|
STATUS
|
approved
|
|
|
|