login
A306022
Stirling transform of partitions numbers (A000041).
4
1, 1, 3, 10, 38, 163, 774, 4006, 22376, 133951, 854402, 5775948, 41190317, 308651432, 2422315371, 19856073597, 169596622997, 1506139073454, 13879704561038, 132488897335228, 1307829322689944, 13330635710335512, 140118664473276174, 1516899115597189064
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Stirling Transform.
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000041(k).
MAPLE
a:= n-> add(combinat[numbpart](j)*Stirling2(n, j), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2018
MATHEMATICA
Table[Sum[StirlingS2[n, k]*PartitionsP[k], {k, 0, n}], {n, 0, 25}]
PROG
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*numbpart(k)); \\ Michel Marcus, Jun 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 17 2018
STATUS
approved