%I #22 Jan 16 2024 22:05:39
%S 1,1,2,6,54,1754,1102746,68715913086,1180735735356265746734,
%T 170141183460507906731293351306656207090,
%U 7237005577335553223087828975127304177495735363998991435497132232365910414322
%N Number of set-systems spanning {1,...,n} in which all sets have the same size.
%C a(n) is the number of labeled uniform hypergraphs spanning n vertices. - _Andrew Howroyd_, Jan 16 2024
%H Andrew Howroyd, <a href="/A306021/b306021.txt">Table of n, a(n) for n = 0..14</a>
%F a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
%F Inverse binomial transform of A306020. - _Andrew Howroyd_, Jan 16 2024
%e The a(3) = 6 set-systems in which all sets have the same size:
%e {{1,2,3}}
%e {{1}, {2}, {3}}
%e {{1,2}, {1,3}}
%e {{1,2}, {2,3}}
%e {{1,3}, {2,3}}
%e {{1,2}, {1,3}, {2,3}}
%t Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
%o (PARI) a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ _Andrew Howroyd_, Jan 16 2024
%Y Row sums of A299471.
%Y The unlabeled version is A301481.
%Y The connected version is A299353.
%Y Cf. A000005, A001315, A007716, A038041, A049311, A283877, A298422, A306017, A306018, A306019, A306020.
%K nonn
%O 0,3
%A _Gus Wiseman_, Jun 17 2018