login
Expansion of e.g.f. Product_{k>=1} 1/(1 - (exp(x) - 1)^k/k).
6

%I #13 Jul 31 2019 12:28:25

%S 1,1,4,21,144,1205,11908,135597,1745488,25045821,396249564,6850289765,

%T 128438323720,2595394603269,56224162108468,1299717221807229,

%U 31931915643021504,830816659779428525,22820190255069409804,659845945466402034165,20034230527927369097848,637252918691725377815349

%N Expansion of e.g.f. Product_{k>=1} 1/(1 - (exp(x) - 1)^k/k).

%C Stirling transform of A007841.

%H Vaclav Kotesovec, <a href="/A305986/b305986.txt">Table of n, a(n) for n = 0..420</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a>

%F E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (exp(x) - 1)^(j*k)/(k*j^k)).

%F a(n) = Sum_{k=0..n} Stirling2(n,k)*A007841(k).

%F a(n) ~ c * n! * n / log(2)^n, where c = exp(-gamma) / (4*log(2)^2) = 0.29215... and gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Jul 23 2019

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(combinat[multinomial](n, n-i*j, i$j)*

%p b(n-i*j, i-1)*(i-1)!^j, j=0..n/i)))

%p end:

%p a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jun 15 2018

%t nmax = 21; CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%t nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(Exp[x] - 1)^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

%t b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, #^(1 - k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 21}]

%Y Cf. A007841, A140585, A167137, A305987.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Jun 15 2018