login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305833 Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. 1
1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013611 ((1+4*x)^n).

The coefficients in the expansion of 1/(1-4x-x^2) are given by the sequence generated by the row sums.

The row sums are A001076 (Denominators of continued fraction convergent to sqrt(5)).

If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 4.236067977...; a metallic mean (see A098317), when n approaches infinity.

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.

LINKS

Table of n, a(n) for n=0..48.

Shara Lalo, Left justified triangle

Shara Lalo, Skew diagonals in triangle A013611

FORMULA

G.f.: 1 / (1 - 4*t*x - t^2).

EXAMPLE

Triangle begins:

         1;

         4;

        16,        1;

        64,        8;

       256,       48,        1;

      1024,      256,       12;

      4096,     1280,       96,       1;

     16384,     6144,      640,      16;

     65536,    28672,     3840,     160,      1;

    262144,   131072,    21504,    1280,     20;

   1048576,   589824,   114688,    8960,    240,    1;

   4194304,  2621440,   589824,   57344,   2240,   24;

  16777216, 11534336,  2949120,  344064,  17920,  336,  1;

  67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;

MATHEMATICA

t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

CROSSREFS

Row sums give A001076.

Cf. A000302 (column 0), A002697 (column 1), A038845 (column 2), A038846 (column 3), A040075 (column 4).

Cf. A013611.

Cf. A098317.

Sequence in context: A165410 A016486 A065659 * A110650 A232515 A010295

Adjacent sequences:  A305830 A305831 A305832 * A305834 A305835 A305836

KEYWORD

tabf,nonn,easy

AUTHOR

Shara Lalo, Jun 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 00:12 EST 2019. Contains 329310 sequences. (Running on oeis4.)