login
A305728
Numbers of the form 216*p^3, where p is a Pythagorean prime (A002144).
1
27000, 474552, 1061208, 5268024, 10941048, 14886936, 32157432, 49027896, 84027672, 152273304, 197137368, 222545016, 279726264, 311665752, 555412248, 714516984, 835896888, 1118386872, 1280824056, 1552836312, 1651400568, 2593941624, 2732256792, 3023464536, 3666512088
OFFSET
1,1
COMMENTS
No term can be written as x^2 + y^2 + z^9.
LINKS
W. Jagy and I. Kaplansky, Sums of Squares, Cubes and Higher Powers, Experimental Mathematics, vol. 4 (1995), p. 171 (see Theorem under Higher powers).
MAPLE
P := select(p -> isprime(p), [seq(n, n=5..1000, 4)]):
seq((6*p)^3, p in P); # Peter Luschny, Jun 22 2018
MATHEMATICA
P = Select[Range[5, 300, 4], PrimeQ];
A305728 = (6P)^3 (* Jean-François Alcover, Jun 22 2018 *)
PROG
(Magma) [216*p^3: p in PrimesUpTo(300) | IsOne(p mod 4)];
(PARI) first(n) = my(res=List()); forprime(p=5, oo, if(p%4 == 1, listput(res, (6*p)^3); n--; if(n==0, return(res)))) \\ David A. Corneth, Jun 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Bruno Berselli, Jun 22 2018
STATUS
approved