login
A305685
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 25, 24, 1, 1, 82, 139, 139, 82, 1, 1, 272, 818, 1595, 818, 272, 1, 1, 908, 4869, 17947, 17947, 4869, 908, 1, 1, 3076, 29339, 207116, 383910, 207116, 29339, 3076, 1, 1, 10444, 177688, 2403703, 8417922, 8417922, 2403703
OFFSET
1,5
COMMENTS
Table starts
.1.....1.......1.........1...........1..............1................1
.1.....4.......8........24..........82............272..............908
.1.....8......25.......139.........818...........4869............29339
.1....24.....139......1595.......17947.........207116..........2403703
.1....82.....818.....17947......383910........8417922........185389115
.1...272....4869....207116.....8417922......351440611......14724197226
.1...908...29339...2403703...185389115....14724197226....1172824606532
.1..3076..177688..27979008..4094434997...618597002816...93679147557172
.1.10444.1078090.325990496.90512430926.26011056462909.7488807032051960
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 14] for n>16
k=4: [order 38] for n>40
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..0
..1..1..0..1. .0..1..1..0. .1..1..0..0. .0..1..1..0. .1..0..1..1
..0..1..0..1. .1..1..0..1. .0..0..1..0. .1..0..0..1. .0..0..1..1
..1..1..1..0. .1..0..1..1. .1..0..1..0. .1..1..1..0. .1..0..1..1
..0..1..0..1. .1..0..1..0. .1..0..1..0. .0..0..0..1. .1..0..1..1
CROSSREFS
Column 2 is A303882.
Sequence in context: A316244 A305954 A317215 * A317065 A316932 A317703
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 08 2018
STATUS
approved