This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305669 Take the sum of the digits of a number, put it at the left side and delete the same number of digits at the right side. Repeat the process. Sequence lists numbers that reach themselves after some steps. 0
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 21, 32, 41, 51, 53, 54, 65, 81, 85, 95, 98, 101, 108, 109, 116, 171, 179, 210, 321, 632, 811, 910, 917, 1013, 1071, 1112, 1113, 1114, 1116, 1271, 1291, 1312, 1313, 1315, 1316, 1323, 1375, 1381, 1415, 1516, 1517, 1585 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Fixed points of the process (numbers that reach themselves in a single step) are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1818, 17171, 272727, 1313131, 2626262, 3939393, 12121212, 24242424, 36363636, 48484848, etc. The number of steps to return to the original number or to enter another cycle depends on the number of digits. Here below all possible steps against the number of digits from 1 to 8: Digits    Steps 1         1 2         3, 12 3         3, 9 4         1, 3, 10, 31 5         1, 9 6         1, 4, 13, 21, 39 7         1, 2, 4, 5, 6, 10, 12, 20, 23, 30, 60 8         1, 3, 26, 78 LINKS MAPLE P:=proc(q) local a, b, c, d, k, n, x; for n from 1 to q do a:=convert(n, base, 10); d:=a; x:=0; while x<10^(ilog10(n)+1) do x:=x+1; b:=convert(a, `+`); c:=ilog10(b)+1; b:=convert(b, base, 10); for k from 1 to nops(a)-c do a[k]:=a[k+c]; od; for k from 1 to c do a[nops(a)-c+k]:=b[k]; od; if a=d then print(n); break; fi; od; od; end: P(10^6); CROSSREFS Cf. A007953. Sequence in context: A318736 A050741 A285710 * A325364 A133810 A176615 Adjacent sequences:  A305666 A305667 A305668 * A305670 A305671 A305672 KEYWORD nonn,easy,base AUTHOR Paolo P. Lava, Jun 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 13:31 EDT 2019. Contains 328161 sequences. (Running on oeis4.)