login
A305664
Denominators of the fraction Sum_{n>=0} {a(n)/a(n+1)} = a(0)/a(1) + a(1)/a(2) + a(2)/a(3) + ... such that the sum has the concatenation of these denominators as decimal part. Case a(0) = 1 and a(1) = 3.
25
1, 3, 407, 6600381, 17430443514717989342, 6151641599894174777009497253213101162115020503132036
OFFSET
0,2
COMMENTS
It appears that there are only three sequences of this kind, with a(1) = 3 (this sequence), a(1) = 4 (A305665) and a(1) = 10 (A305666).
a(6) has 136 digits. - Giovanni Resta, Jun 08 2018
EXAMPLE
1/3 = 0.3333...
1/3 + 3/407 = 0.3407043...
1/3 + 3/407 + 407/6600381= 0.34076600381136...
The sum is 0.3 407 6600381 ...
MAPLE
P:=proc(q, h) local a, b, d, n, t, x; x:=1; a:=1/h; b:=ilog10(h)+1;
d:=h; print(d); t:=1/a; for n from x to q do
if trunc(evalf(a+t/n, 100)*10^(b+ilog10(n)+1))=d*10^(ilog10(n)+1)+n then b:=b+ilog10(n)+1; d:=d*10^(ilog10(n)+1)+n; a:=a+t/n; t:=n; x:=n+1; print(n); fi; od; end: P(10^20, 3);
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 08 2018
EXTENSIONS
a(4)-a(5) from Giovanni Resta, Jun 08 2018
a(0)=1 inserted. - R. J. Mathar, Jun 19 2021
STATUS
approved