login
A305628
Expansion of Product_{k>=1} 1/(1 + x^k)^(k+1).
2
1, -2, 0, -2, 5, -2, 7, -6, 11, -20, 13, -32, 31, -50, 60, -70, 124, -112, 192, -198, 295, -364, 422, -616, 661, -1002, 1034, -1500, 1737, -2208, 2808, -3234, 4462, -4876, 6735, -7464, 9990, -11610, 14410, -17866, 20947, -27082, 30493, -40056, 45147, -58196, 66999, -83278, 99641
OFFSET
0,2
COMMENTS
Convolution of A081362 and A255528.
Convolution inverse of A219555.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} (-1)^k*x^k*(2 - x^k)/(k*(1 - x^k)^2)).
a(n) ~ (-1)^n * exp(3 * Zeta(3)^(1/3) * n^(2/3) / 2^(5/3) + Pi^2 * n^(1/3) / (3 * 2^(7/3) * Zeta(3)^(1/3)) - 1/12 - Pi^4 / (864 * Zeta(3))) * A * Zeta(3)^(5/36) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Aug 21 2018
MATHEMATICA
nmax = 48; CoefficientList[Series[Product[1/(1 + x^k)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[(-1)^k x^k (2 - x^k)/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) d (d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 11 2018
STATUS
approved