login
Number of diagonal Latin squares of order n with at least one orthogonal diagonal mate.
10

%I #46 Aug 08 2023 03:22:55

%S 1,0,0,48,480,0,1290240,25484820480,34482663290880

%N Number of diagonal Latin squares of order n with at least one orthogonal diagonal mate.

%H E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=90756#post90756">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian).

%H E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)

%H E. Vatutin and A. Belyshev, <a href="https://www.springerprofessional.de/en/enumerating-the-orthogonal-diagonal-latin-squares-of-small-order/18659992">Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality</a>, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.

%H E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and I. I. Citerra, <a href="http://evatutin.narod.ru/evatutin_co_dls_bachelors_cnt.pdf">Estimation of the probability of finding orthogonal diagonal Latin squares among general diagonal Latin squares</a>, Recognition - 2018. Kursk: SWSU, 2018. pp. 72-74. (in Russian).

%H Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).

%H Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1496">Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).

%H E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_odls_1_to_8.zip">List of all main classes of orthogonal diagonal Latin squares of orders 1-8</a>.

%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.

%F a(n) = A305570(n) * n!.

%F a(n) = A274806(n) - A305569(n).

%Y Cf. A274806, A305569, A305570.

%K nonn,more,hard

%O 1,4

%A _Eduard I. Vatutin_, Jun 05 2018

%E a(9) added by _Eduard I. Vatutin_, Dec 22 2020