%I #48 Aug 07 2023 19:44:34
%S 1,0,0,2,4,0,256,632064,95024976
%N Number of diagonal Latin squares of order n with the first row in order and at least one orthogonal diagonal mate.
%H E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=90756#post90756">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian)
%H E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
%H E. Vatutin and A. Belyshev, <a href="https://www.springerprofessional.de/en/enumerating-the-orthogonal-diagonal-latin-squares-of-small-order/18659992">Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality</a>, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
%H E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and I. I. Citerra, <a href="http://evatutin.narod.ru/evatutin_co_dls_bachelors_cnt.pdf">Estimation of the probability of finding orthogonal diagonal Latin squares among general diagonal Latin squares</a>, Recognition - 2018. Kursk: SWSU, 2018. pp. 72-74. (in Russian)
%H Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1496">Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H Eduard I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_odls_1_to_8.zip">List of all main classes of orthogonal diagonal Latin squares of orders 1-8</a>.
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%F a(n) = A305571(n) / n!.
%F a(n) = A274171(n) - A305568(n).
%Y Cf. A274171, A305568, A305571, A330391.
%K nonn,more,hard
%O 1,4
%A _Eduard I. Vatutin_, Jun 05 2018
%E Name clarified by _Andrew Howroyd_, Oct 19 2020
%E a(9) added by _Eduard I. Vatutin_, Dec 22 2020