This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305560 Expansion of Sum_{k>=0} binomial(k,floor(k/2))*x^k/Product_{j=1..k} (1 - j*x). 2
 1, 1, 3, 10, 39, 176, 893, 4985, 30229, 197452, 1379655, 10250087, 80558195, 666916238, 5795111845, 52691973136, 499969246647, 4938724595994, 50679201983653, 539209298355565, 5938139329609621, 67582179415195986, 793755139140445707, 9608367683839952732, 119730171975510540577 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Stirling transform of A001405. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..550 N. J. A. Sloane, Transforms Eric Weisstein's World of Mathematics, Stirling Transform FORMULA E.g.f.: BesselI(0,2*(exp(x) - 1)) + BesselI(1,2*(exp(x) - 1)). a(n) = Sum_{k=0..n} Stirling2(n,k)*binomial(k,floor(k/2)). MAPLE a:= n-> add(binomial(j, floor(j/2))*Stirling2(n, j), j=0..n): seq(a(n), n=0..30);  # Alois P. Heinz, Jun 21 2018 MATHEMATICA nmax = 24; CoefficientList[Series[Sum[Binomial[k, Floor[k/2]] x^k/Product[1 - j x, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] nmax = 24; CoefficientList[Series[BesselI[0, 2 (Exp[x] - 1)] + BesselI[1, 2 (Exp[x] - 1)], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[StirlingS2[n, k] Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 24}] CROSSREFS Cf. A001405, A005773, A064856, A305406. Sequence in context: A205543 A137590 A124532 * A074728 A087860 A307593 Adjacent sequences:  A305557 A305558 A305559 * A305561 A305562 A305563 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jun 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 23:29 EDT 2019. Contains 325189 sequences. (Running on oeis4.)