login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305547 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k/k!). 2
1, 1, 2, 8, 37, 182, 1039, 7149, 56382, 479220, 4280247, 40406984, 410453366, 4539623168, 54431372233, 695801259947, 9312538336475, 128985882874288, 1842668013046405, 27238267120063415, 419396473955088310, 6769168354222927254, 114837651830425810381, 2042782103293394499566 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Stirling transform of A007837.

LINKS

Table of n, a(n) for n=0..23.

N. J. A. Sloane, Transforms

Eric Weisstein's World of Mathematics, Stirling Transform

FORMULA

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*(exp(x) - 1)^(j*k)/((j!)^k*k)).

a(n) = Sum_{k=0..n} Stirling2(n,k)*A007837(k).

MAPLE

b:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),

       d=numtheory[divisors](k))*(n-1)!/(n-k)!*b(n-k), k=1..n))

    end:

a:= n-> add(Stirling2(n, k)*b(k), k=0..n):

seq(a(n), n=0..25);  # Alois P. Heinz, Jun 15 2018

MATHEMATICA

nmax = 23; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

nmax = 23; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) (Exp[x] - 1)^(j k)/((j!)^k k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, -# (-#!)^(-k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 23}]

CROSSREFS

Cf. A007837, A140585.

Sequence in context: A280119 A224032 A046814 * A007857 A289541 A047729

Adjacent sequences:  A305544 A305545 A305546 * A305548 A305549 A305550

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 17:34 EST 2019. Contains 329106 sequences. (Running on oeis4.)