%I #9 Jul 16 2024 02:34:35
%S 3,6,9,12,15,18,21,23,24,27,30,33,36,39,42,45,48,50,51,54,57,60,63,66,
%T 69,72,75,77,78,81,84,87,90,93,96,99,102,104,105,108,111,114,117,120,
%U 123,126,129,131,132,135,138,141,144,147,150,153,156,158,159
%N Positions of 0 in the fixed point of the morphism 0->120, 1->110, 2->100 applied to 1 (as in A305490).
%C Let u, v, w be the position sequences of 0,1,2 in A305490. They partition the positive integers, and v is also the position sequence of 0 in Stewart's choral sequence, A116178.
%H Clark Kimberling, <a href="/A305495/b305495.txt">Table of n, a(n) for n = 1..10000</a>
%e Fixed point: (1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, ... )
%e Positions of 0: (3,6,9,12,15,18,21,23, ... ) = A305495
%e Positions of 1: (1,2,4,5,7,10,11,13,14, ... ) = A189636
%e Positions of 2: (8,17,26,35,44,53,62,68, ... ) = A305496
%t z = 120;
%t t = Nest[Flatten[# /. {0 -> {1, 2, 0}, 1 -> {1, 1, 0},
%t 2 -> {1, 0, 0}}] &, {0}, 9]; (* A305490 *)
%t Take[Flatten[Position[t, 0]], z] (* A305495 *)
%t Take[Flatten[Position[t, 1]], z] (* A116178 *)
%t Take[Flatten[Position[t, 2]], z] (* A305496 *)
%Y Cf. A305490, A116178, A305496.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Jun 02 2018