login
A305471
a(0) = 1, a(1) = 3, a(n) = 3*n*a(n-1) - a(n-2).
3
1, 3, 17, 150, 1783, 26595, 476927, 9988872, 239256001, 6449923155, 193258438649, 6371078552262, 229165569442783, 8931086129716275, 374876451878640767, 16860509248409118240, 808929567471759034753, 41238547431811301654163
OFFSET
0,2
COMMENTS
Let S(i,j,n) denote a sequence of the form a(0) = 1, a(1) = i, a(n) = i*n*a(n-1) + j*a(n-2). Then S(i,j,n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*i^(n-2*k)*j^k.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*3^(n-2*k)*(-1)^k.
a(n) ~ BesselJ(0, 2/3) * n! * 3^n. - Vaclav Kotesovec, Jun 03 2018
PROG
(PARI) {a(n) = sum(k=0, n/2, ((n-k)!/k!)*binomial(n-k, k)*3^(n-2*k)*(-1)^k)}
CROSSREFS
Column k=3 of A305466.
Sequence in context: A009813 A319946 A213507 * A368597 A135750 A286345
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 02 2018
STATUS
approved