login
A305470
Smallest binary palindrome whose product with A305468(n) gives a binary palindrome.
1
1, 1, 1, 1, 1, 3, 5, 1, 1, 27, 1, 1, 1, 1, 5, 3, 1, 1, 63, 3, 9, 7, 1, 1, 765, 1, 3, 11253, 45, 1, 3, 1, 27, 1, 1, 21, 5, 1, 93, 1, 1, 27, 15, 39513, 7, 1, 3, 21, 45, 1, 3, 33, 63, 93, 3, 1, 153, 1, 7, 5, 3, 255, 3, 1, 5, 13299, 15, 1, 255, 3, 17, 15, 1, 1, 51
OFFSET
1,6
LINKS
James Haoyu Bai, Joseph Meleshko, Samin Riasat, and Jeffrey Shallit, Quotients of Palindromic and Antipalindromic Numbers, arXiv:2202.13694 [math.NT], 2022.
James Haoyu Bai, Joseph Meleshko, Samin Riasat, and Jeffrey Shallit, Quotients of Palindromic and Antipalindromic Numbers, INTEGERS 22 (2022), #A96.
EXAMPLE
For n = 10 the corresponding term A305468(10) equals 19, and both a(10) = 27 and 27*19 = 513 are binary palindromes.
CROSSREFS
Sequence in context: A091084 A016610 A356551 * A141707 A329593 A263490
KEYWORD
nonn,base
AUTHOR
Jeffrey Shallit, Jun 02 2018
STATUS
approved