This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305406 Expansion of Sum_{k>=0} binomial(2*k,k)*x^k/Product_{j=1..k} (1 - j*x). 2
 1, 2, 8, 40, 234, 1544, 11242, 89016, 758504, 6900012, 66590782, 678322704, 7262393832, 81431657220, 953339019606, 11622207372104, 147199295291518, 1932876310310488, 26265519359529974, 368752956750812256, 5340795881536757632, 79691179458925839676, 1223524383429928039306 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Stirling transform of A000984. LINKS N. J. A. Sloane, Transforms Eric Weisstein's World of Mathematics, Stirling Transform FORMULA E.g.f.: exp(2*(exp(x) - 1))*BesselI(0,2*(exp(x) - 1)). a(n) = Sum_{k=0..n} Stirling2(n,k)*binomial(2*k,k). MATHEMATICA nmax = 22; CoefficientList[Series[Sum[Binomial[2 k, k] x^k/Product[1 - j x, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] nmax = 22; CoefficientList[Series[Exp[2 (Exp[x] - 1)] BesselI[0, 2 (Exp[x] - 1)], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[StirlingS2[n, k] Binomial[2 k, k], {k, 0, n}], {n, 0, 22}] CROSSREFS Cf. A000984, A064856. Sequence in context: A089603 A209358 A116456 * A296050 A055882 A002301 Adjacent sequences:  A305403 A305404 A305405 * A305407 A305408 A305409 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 16:58 EDT 2019. Contains 325107 sequences. (Running on oeis4.)