login
A305272
a(n) = 836*2^n - 676.
4
160, 996, 2668, 6012, 12700, 26076, 52828, 106332, 213340, 427356, 855388, 1711452, 3423580, 6847836, 13696348, 27393372, 54787420, 109575516, 219151708, 438304092, 876608860, 1753218396, 3506437468, 7012875612, 14025751900, 28051504476, 56103009628, 112206019932, 224412040540, 448824081756
OFFSET
0,1
COMMENTS
a(n) is the second Zagreb index of the polyphenylene dendrimer G[n], defined pictorially in the Arif et al. reference (see Fig. 1, where G[2] is shown).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the polyphenylene dendrimer G[n] is M(G[n]; x, y) = (56*2^n - 40)*x^2*y^2 + (48*2^n - 40)*x^2*y^3 +(36* 2^n - 36)*x^3*y^3 + 4*x^3 *y^4.
LINKS
N. E. Arif, Roslan Hasni and Saeid Alikhani, Fourth order and fourth sum connectivity indices of polyphenylene dendrimers, J. Applied Science, 12 (21), 2012, 2279-2282.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
From Colin Barker, May 31 2018: (Start)
G.f.: 4*(40 + 129*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)
MAPLE
seq(836*2^n-676, n = 0..40);
MATHEMATICA
836*2^Range[0, 40]-676 (* or *) LinearRecurrence[{3, -2}, {160, 996}, 40] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) Vec(4*(40 + 129*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 30 2018
STATUS
approved