login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305204 Expansion of Product_{k>=1} 1/(1 - (k*(k + 1)/2)*x^k). 2
1, 1, 4, 10, 29, 62, 176, 363, 931, 2029, 4751, 10062, 23749, 48959, 109342, 230981, 500344, 1031667, 2223218, 4531585, 9570395, 19523510, 40411313, 81628389, 168484616, 336850254, 685112670, 1369559157, 2757908932, 5464925114, 10958578421, 21574592680 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..3841

FORMULA

G.f.: Product_{k>=1} 1/(1 - A000217(k)*x^k).

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j*(j + 1))^k*x^(j*k)/(k*2^k)).

MAPLE

b:= proc(n, i) option remember; `if`(n=0 or i=1,

      1, b(n, i-1)+(1+i)*i/2*b(n-i, min(n-i, i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..33);  # Alois P. Heinz, Aug 16 2019

MATHEMATICA

nmax = 31; CoefficientList[Series[Product[1/(1 - (k (k + 1)/2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 31; CoefficientList[Series[Exp[Sum[Sum[(j (j + 1))^k x^(j k)/(k 2^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(k/d + 1) ((d + 1)/2)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

CROSSREFS

Cf. A000217, A000294, A006906, A077335, A265836.

Sequence in context: A111236 A164361 A006907 * A327590 A321344 A329156

Adjacent sequences:  A305201 A305202 A305203 * A305205 A305206 A305207

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, May 27 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 20:35 EDT 2020. Contains 337388 sequences. (Running on oeis4.)