login
A305179
Number of nX5 0..1 arrays with every element unequal to 1, 2, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1
3, 8, 14, 13, 64, 137, 140, 668, 1652, 2361, 6578, 18378, 34712, 74220, 198302, 443314, 914478, 2205546, 5256982, 11329144, 25638940, 60932298, 137160172, 305545804, 709266522, 1629634600, 3657579692, 8345325220, 19216257540, 43592320618
OFFSET
1,1
COMMENTS
Column 5 of A305182.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-2) +17*a(n-3) +9*a(n-4) -31*a(n-5) -131*a(n-6) -91*a(n-7) +206*a(n-8) +575*a(n-9) +361*a(n-10) -762*a(n-11) -1527*a(n-12) -664*a(n-13) +1679*a(n-14) +2438*a(n-15) +360*a(n-16) -2241*a(n-17) -1976*a(n-18) +713*a(n-19) +1609*a(n-20) -67*a(n-21) -1372*a(n-22) -101*a(n-23) +1502*a(n-24) +741*a(n-25) -640*a(n-26) -994*a(n-27) +152*a(n-28) +351*a(n-29) +44*a(n-30) -386*a(n-31) -78*a(n-32) +338*a(n-33) +196*a(n-34) -6*a(n-35) -204*a(n-36) -74*a(n-37) +20*a(n-38) +52*a(n-39) +18*a(n-40) -4*a(n-41) -16*a(n-42) +4*a(n-43) for n>50
EXAMPLE
Some solutions for n=5
..0..1..0..1..0. .0..1..1..1..1. .0..1..1..0..1. .0..1..0..1..0
..0..0..0..0..0. .1..0..1..1..0. .1..0..1..1..1. .0..0..0..0..0
..0..0..0..0..0. .1..1..1..1..1. .1..1..1..1..1. .0..0..0..0..0
..0..1..1..0..1. .1..1..1..1..0. .1..1..1..0..1. .0..1..0..1..0
..0..0..0..0..0. .1..0..1..1..1. .1..0..1..1..0. .1..0..0..0..1
CROSSREFS
Cf. A305182.
Sequence in context: A153891 A056402 A366071 * A106386 A000232 A375292
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 26 2018
STATUS
approved