The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305137 O.g.f. A(x) satisfies: 0 = [x^n] exp( n^2 * Integral A(x) dx ) / A(x), for n > 0. 13
 1, 1, 7, 97, 1987, 53281, 1754245, 68228209, 3055471369, 154724090845, 8740256396563, 545005932104377, 37196779826275411, 2759229671824346893, 221140447146112986889, 19051164839221523341825, 1756309610450933072328241, 172576908229287147075691417, 18010455349270266144268806799, 1989930676607696867000687913025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS It is remarkable that this sequence should consist entirely of integers. Note: 0 = [x^n] exp( n * Integral C(x) dx ) / C(x) holds for n > 0 when C(x) = 1 + x*C(x)^2 is a g.f. of the Catalan numbers (A000108). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA a(n) ~ c * d^n * (n-1)!, where d = 4 / (-LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) and c = 0.2658290856... - Vaclav Kotesovec, Oct 19 2020 EXAMPLE O.g.f.: A(x) = 1 + x + 7*x^2 + 97*x^3 + 1987*x^4 + 53281*x^5 + 1754245*x^6 + 68228209*x^7 + 3055471369*x^8 + 154724090845*x^9 + 8740256396563*x^10 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k in exp(n^2*Integral A(x) dx)/A(x) begins: n=0: [1, -1, -6, -84, -1764, -48360, -1620186, -63857556, ...]; n=1: [1, 0, -6, -88, -1830, -249144/5, -1661842, -2284994352/35, ...]; n=2: [1, 3, 0, -90, -2025, -272391/5, -8967968/5, -488439972/7, ...]; n=3: [1, 8, 30, 0, -2100, -311856/5, -10175418/5, -545952984/7, ...]; n=4: [1, 15, 114, 532, 0, -327564/5, -2389194, -3186733572/35, ...]; n=5: [1, 24, 294, 2416, 13536, 0, -2539746, -763395912/7, ...]; n=6: [1, 35, 624, 7542, 68415, 2234001/5, 0, -4102900932/35, ...]; n=7: [1, 48, 1170, 19320, 242550, 12134424/5, 90334582/5, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp(n^2*Integral A(x) dx)/A(x), for n > 0. RELATED SERIES. exp(Integral A(x) dx) = 1 + x + 2*x^2/2! + 18*x^3/3! + 648*x^4/4! + 50904*x^5/5! + 6700464*x^6/6! + 1310200848*x^7/7! + 354395417472*x^8/8! + 126396068810112*x^9/9! + ... A'(x)/A(x) = 1 + 13*x + 271*x^2 + 7489*x^3 + 253771*x^4 + 10113877*x^5 + 461995381*x^6 + 23766009457*x^7 + 1359214691545*x^8 + 85572483605593*x^9 + ... PROG (PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^2*intformal(Ser(A))) / Ser(A) )[m+1] ); A[n+1]} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A305138, A305139, A305140, A305141, A305142, A305143. Sequence in context: A022007 A174516 A058805 * A132061 A013521 A003710 Adjacent sequences: A305134 A305135 A305136 * A305138 A305139 A305140 KEYWORD nonn AUTHOR Paul D. Hanna, May 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 12:11 EST 2022. Contains 358634 sequences. (Running on oeis4.)