login
A305106
Number of unitary factorizations of Heinz numbers of integer partitions of n. Number of multiset partitions of integer partitions of n with pairwise disjoint blocks.
2
1, 1, 2, 4, 7, 12, 21, 34, 55, 87, 138, 211, 324, 486, 727, 1079, 1584, 2305, 3337, 4789, 6830, 9712, 13689, 19225, 26841, 37322, 51598, 71108, 97580, 133350, 181558, 246335, 332991, 448706, 602607, 806732, 1077333, 1433885, 1903682, 2520246, 3328549, 4383929
OFFSET
0,3
LINKS
EXAMPLE
The a(6) = 21 unitary factorizations:
(13) (21) (22) (25) (27) (28) (30) (36) (40) (48) (64)
(2*11) (2*15) (3*7) (3*10) (3*16) (4*7) (4*9) (5*6) (5*8)
(2*3*5)
The a(6) = 21 multiset partitions:
{{6}}
{{2,4}}
{{1,5}}
{{3,3}}
{{2,2,2}}
{{1,1,4}}
{{1,2,3}}
{{1,1,2,2}}
{{1,1,1,3}}
{{1,1,1,1,2}}
{{1,1,1,1,1,1}}
{{1},{5}}
{{1},{2,3}}
{{2},{4}}
{{2},{1,3}}
{{2},{1,1,1,1}}
{{1,1},{4}}
{{1,1},{2,2}}
{{3},{1,2}}
{{3},{1,1,1}}
{{1},{2},{3}}
MATHEMATICA
Table[Sum[BellB[Length[Union[y]]], {y, IntegerPartitions[n]}], {n, 30}]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!;
a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz in A321878 *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 25 2018
STATUS
approved