login
A305104
G.f.: Sum_{k>=1} x^(2*k)/(1-x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).
4
0, 0, 1, 2, 6, 12, 24, 44, 79, 134, 222, 358, 566, 876, 1334, 2000, 2960, 4326, 6253, 8946, 12680, 17816, 24832, 34352, 47192, 64404, 87354, 117796, 157976, 210764, 279812, 369744, 486413, 637188, 831324, 1080420, 1398968, 1805012, 2320992, 2974728, 3800618
OFFSET
0,4
COMMENTS
Convolution A066898 of and A000009.
Convolution A090867 of and A000041.
LINKS
FORMULA
a(n) ~ (2*gamma + log(n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1-x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 25 2018
STATUS
approved