login
A305080
Number of connected strict integer partitions of n with pairwise indivisible and squarefree parts.
0
1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 2, 2, 3, 2, 2, 4, 2, 3, 4, 4, 3, 4, 3, 4, 5, 6, 4, 6, 5, 7, 6, 5, 6, 8, 6, 6, 6, 10, 11, 11, 9, 11, 9, 13
OFFSET
1,21
COMMENTS
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
Conjecture: This sequence is "eventually increasing," meaning that for all k >= 0 there exists an m >= 0 such that a(n) > k for all n > m. For k = 0 it appears we can take m = 18, for example.
EXAMPLE
The a(52) = 6 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,10,6): {{2,4},{2,3},{1,3},{1,2}}
(22,14,10,6): {{1,5},{1,4},{1,3},{1,2}}
(30,22): {{1,2,3},{1,5}}
(38,14): {{1,8},{1,4}}
(42,10): {{1,2,4},{1,3}}
(46,6): {{1,9},{1,2}}
The a(60) = 8 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,14,10): {{2,4},{2,3},{1,4},{1,3}}
(33,21,6): {{2,5},{2,4},{1,2}}
(35,15,10): {{3,4},{2,3},{1,3}}
(39,15,6): {{2,6},{2,3},{1,2}}
(34,26): {{1,7},{1,6}}
(38,22): {{1,8},{1,5}}
(39,21): {{2,6},{2,4}}
(46,14): {{1,9},{1,4}}
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And[UnsameQ@@#, And@@SquareFreeQ/@#, Length[zsm[#]]==1, Select[Tuples[#, 2], UnsameQ@@#&&Divisible@@#&]=={}]&]], {n, 50}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 25 2018
STATUS
approved