login
A305076
Numbers k such that prime(k)^k - primorial(k - 1) is prime.
1
2, 4, 5, 8, 9, 15, 29, 213, 666, 1360, 3932, 7916
OFFSET
1,1
COMMENTS
Numbers k such that A304917(k) is prime.
a(12) > 4000 if it exists.
EXAMPLE
n = 1 gives 2 - 1 = 1. n=2 gives 3^2 - 2 = 7, so 2 is the first term.
MAPLE
N:=2000:
for X from 1 to N do
Z:=mul(ithprime(i), i=1..(X-1));
Y:=(ithprime(X)^X - Z);
if isprime(Y) then print(X);
end if
end do:
MATHEMATICA
Select[Range@ 700, PrimeQ[Prime[#]^# - Product[Prime@ i, {i, # - 1}]] &] (* Michael De Vlieger, Jul 19 2018 *)
PROG
(PARI) isok(k) = isprime(prime(k)^k - prod(j=1, k-1, prime(j))); \\ Michel Marcus, Jun 09 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(12) from Michael S. Branicky, Jun 11 2024
STATUS
approved