|
|
A305026
|
|
Numbers k such that sopfr(k) = tau(k)^2.
|
|
2
|
|
|
39, 55, 354, 578, 1634, 1644, 6604, 8253, 9825, 12573, 13516, 14749, 15244, 16684, 18669, 18672, 19276, 19564, 21032, 22225, 25305, 28449, 29853, 31688, 33633, 35793, 41261, 41768, 41949, 42813, 48013, 50670, 54048, 59750, 60804, 63609, 63869, 65265, 78832
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For numbers k that satisfy the condition, tau(k) will always be even because tau(k) is odd only if k is a square, but if k is a square then sopfr(k) is even (because every prime appears with an even exponent) and thus it cannot be equal to tau(k)^2 which is odd as tau(k). - Giovanni Resta, May 24 2018
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
k such that A001414(k) = A000005(k)^2.
|
|
MATHEMATICA
|
Rest@ Select[Range[10^5], Total[Times @@@ FactorInteger@ #] == DivisorSigma[0, #]^2 &] (* Michael De Vlieger, May 27 2018 *)
|
|
PROG
|
(PARI) isok(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]) == numdiv(n)^2; \\ Michel Marcus, May 24 2018
|
|
CROSSREFS
|
Cf. A000005, A001414, A078511.
Sequence in context: A165346 A268083 A063480 * A009633 A327586 A156333
Adjacent sequences: A305023 A305024 A305025 * A305027 A305028 A305029
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Parker Grootenhuis, May 23 2018
|
|
STATUS
|
approved
|
|
|
|