login
Number of nX4 0..1 arrays with every element unequal to 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
2

%I #4 May 23 2018 16:13:22

%S 0,18,73,769,6742,62314,570806,5242925,48153854,442311927,4062866260,

%T 37320305422,342812233046,3148973511933,28925553848152,

%U 265701741889332,2440659502451731,22419193143374704,205936236498750301

%N Number of nX4 0..1 arrays with every element unequal to 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A305022.

%H R. H. Hardin, <a href="/A305018/b305018.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) +43*a(n-2) -25*a(n-3) -866*a(n-4) -1292*a(n-5) +4913*a(n-6) +15127*a(n-7) +1776*a(n-8) -44842*a(n-9) -61696*a(n-10) +682*a(n-11) +106420*a(n-12) +166737*a(n-13) +28886*a(n-14) -320077*a(n-15) -426550*a(n-16) +113876*a(n-17) +780489*a(n-18) +700471*a(n-19) -246971*a(n-20) -1167585*a(n-21) -904392*a(n-22) +425268*a(n-23) +1326480*a(n-24) +800991*a(n-25) -487720*a(n-26) -1090901*a(n-27) -568273*a(n-28) +242052*a(n-29) +520866*a(n-30) +217197*a(n-31) -96704*a(n-32) -120858*a(n-33) -17124*a(n-34) +32415*a(n-35) +11892*a(n-36) -2872*a(n-37) -2134*a(n-38) -726*a(n-39) +146*a(n-40) +116*a(n-41) -6*a(n-42) for n>44

%e Some solutions for n=5

%e ..0..0..1..0. .0..1..1..0. .0..0..1..0. .0..0..1..0. .0..1..1..0

%e ..1..1..1..0. .0..1..1..0. .1..1..1..1. .1..1..0..1. .1..0..0..1

%e ..1..0..1..0. .0..0..1..0. .1..0..0..1. .0..0..1..1. .0..1..1..0

%e ..0..1..1..1. .0..1..0..1. .0..0..0..1. .1..0..1..0. .0..1..1..0

%e ..0..1..0..0. .1..0..1..0. .1..1..0..1. .1..0..0..1. .1..0..0..1

%Y Cf. A305022.

%K nonn

%O 1,2

%A _R. H. Hardin_, May 23 2018