login
A304988
G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k) * x^k.
2
1, 0, 3, 4, 16, 20, 67, 84, 231, 324, 735, 1026, 2265, 3086, 6199, 8880, 16564, 23390, 42378, 59496, 103588, 146376, 244278, 344186, 564013, 788168, 1255201, 1758400, 2738833, 3812242, 5846114, 8092092, 12200957, 16848156, 24991705, 34365176, 50392543
OFFSET
0,3
FORMULA
a(n) ~ 7^(3/2) * exp(Pi*sqrt(7*n/3)) / (768*n^2).
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 23 2018
STATUS
approved