login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304972 Triangle read by rows of achiral color patterns (set partitions) for a row or loop of length n. T(n,k) is the number using exactly k colors (sets). 47
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 10, 9, 3, 1, 1, 7, 19, 16, 12, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 15, 65, 90, 95, 46, 22, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 63, 665, 2002 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.
LINKS
Juan B. Gil and Luiz E. Lopez, Enumeration of symmetric arc diagrams, arXiv:2203.10589 [math.CO], 2022.
FORMULA
T(n,k) = [n>1] * (k*T(n-2,k) + T(n-2,k-1) + T(n-2,k-2)) + [n<2 & n==k & n>=0].
T(2m-1,k) = A140735(m,k).
T(2m,k) = A293181(m,k).
T(n,k) = [k==0 & n==0] + [k==1 & n>0]
+ [k>1 & n==1 mod 2] * Sum_{i=0..(n-1)/2} (C((n-1)/2, i) * T(n-1-2i, k-1))
+ [k>1 & n==0 mod 2] * Sum_{i=0..(n-2)/2} (C((n-2)/2, i) * (T(n-2-2i, k-1)
+ 2^i * T(n-2-2i, k-2))) where C(n,k) is a binomial coefficient.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 10, 9, 3, 1;
1, 7, 19, 16, 12, 3, 1;
1, 15, 38, 53, 34, 18, 4, 1;
1, 15, 65, 90, 95, 46, 22, 4, 1;
1, 31, 130, 265, 261, 195, 80, 30, 5, 1;
1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1;
1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1
1, 63, 665, 2002, 3801, 3836, 3156, 1556, 710, 185, 51, 6, 1;
1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1;
For T(4,2)=3, the row patterns are AABB, ABAB, and ABBA. The loop patterns are AAAB, AABB, and ABAB.
For T(5,3)=5, the color patterns for both rows and loops are AABCC, ABACA, ABBBC, ABCAB, and ABCBA.
MATHEMATICA
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0],
k Ach[n - 2, k] + Ach[n - 2, k - 1] + Ach[n - 2, k - 2]]
Table[Ach[n, k], {n, 1, 15}, {k, 1, n}] // Flatten
Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
Table[Ach[n, k], {n, 1, 15}, {k, 1, n}] // Flatten
PROG
(PARI)
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
{ my(A=Ach(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 18 2019
CROSSREFS
Columns 1-6 are A057427, A052551(n-2), A304973, A304974, A304975, A304976.
A305008 has coefficients that determine the function and generating function for each column.
Row sums are A080107.
Sequence in context: A087284 A262311 A242950 * A152176 A152175 A321620
KEYWORD
nonn,tabl,easy
AUTHOR
Robert A. Russell, May 22 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 13:29 EDT 2024. Contains 371780 sequences. (Running on oeis4.)