This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304967 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-p(k-1)), where p(k) = number of partitions of k (A000041). 6
 1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 49, 68, 123, 173, 295, 432, 707, 1044, 1672, 2483, 3900, 5817, 8993, 13424, 20539, 30609, 46399, 69052, 103879, 154198, 230550, 341261, 507484, 749028, 1108559, 1631340, 2404311, 3527615, 5179317, 7577263, 11086413, 16173577, 23588227 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Euler transform of A002865. LINKS N. J. A. Sloane, Transforms FORMULA G.f.: Product_{k>=1} 1/(1 - x^k)^A002865(k). MAPLE b:= proc(n) option remember; `if`(n=0, 1, add(       (numtheory[sigma](j)-1)*b(n-j), j=1..n)/n)     end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d*       b(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..50);  # Alois P. Heinz, May 22 2018 MATHEMATICA nmax = 42; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - PartitionsP[k - 1]), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - PartitionsP[d - 1]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 42}] CROSSREFS Cf. A000041, A000219, A001383, A001970, A002865, A304966. Sequence in context: A092549 A260890 A022663 * A323654 A092481 A099508 Adjacent sequences:  A304964 A304965 A304966 * A304968 A304969 A304970 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 03:10 EDT 2019. Contains 326318 sequences. (Running on oeis4.)