login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304965 Expansion of Product_{k>=1} 1/(1 - x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767). 3
1, 1, 3, 6, 19, 30, 96, 152, 461, 775, 1883, 3271, 8751, 14370, 34004, 59491, 140450, 239746, 541817, 932681, 2089189, 3606641, 7719178, 13398411, 28848808, 49603982, 103047935, 179154858, 370200348, 639269735, 1295389370, 2241994088, 4511677298, 7798101800, 15408901600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Euler transform of A163767.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

N. J. A. Sloane, Transforms

Index entries for sequences related to partitions

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^k)^A163767(k).

MAPLE

A:= proc(n, k) option remember; `if`(k=1, 1,

      add(A(d, k-1), d=numtheory[divisors](n)))

    end:

a:= proc(n) option remember; `if`(n=0, 1, add(add(d*

      A(d$2), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)

    end:

seq(a(n), n=0..40);  # Alois P. Heinz, May 22 2018

MATHEMATICA

nmax = 34; CoefficientList[Series[Product[1/(1 - x^k)^Times@@(Binomial[# + k - 1, k - 1]&/@FactorInteger[k][[All, 2]]), {k, 1, nmax}], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Times@@(Binomial[# + d - 1, d - 1]&/@FactorInteger[d][[All, 2]]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]

CROSSREFS

Cf. A000219, A001970, A006171, A129373, A129374, A163767, A174465, A280487.

Sequence in context: A306968 A090956 A108972 * A203797 A019097 A219286

Adjacent sequences:  A304962 A304963 A304964 * A304966 A304967 A304968

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, May 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 17:25 EDT 2019. Contains 326059 sequences. (Running on oeis4.)