login
Number of nX4 0..1 arrays with every element unequal to 1, 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 May 22 2018 11:23:54

%S 2,45,118,496,2080,8361,35441,148491,621640,2614631,10980051,46108520,

%T 193777385,814071188,3420213425,14370988671,60379626904,253690644748,

%U 1065913057859,4478525703364,18817002121087,79061634858065

%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A304959.

%H R. H. Hardin, <a href="/A304955/b304955.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) +5*a(n-2) +26*a(n-3) -71*a(n-4) -125*a(n-5) -323*a(n-6) +458*a(n-7) +975*a(n-8) +1918*a(n-9) -70*a(n-10) -1197*a(n-11) -3025*a(n-12) -1281*a(n-13) -4758*a(n-14) -7839*a(n-15) -10463*a(n-16) -38528*a(n-17) -40971*a(n-18) -139418*a(n-19) -49009*a(n-20) +37502*a(n-21) +410850*a(n-22) +1145184*a(n-23) +1501460*a(n-24) +1924001*a(n-25) +604450*a(n-26) -1245485*a(n-27) -3285482*a(n-28) -5607549*a(n-29) -6117526*a(n-30) -7515067*a(n-31) -6020827*a(n-32) -2387648*a(n-33) +1374890*a(n-34) +5596571*a(n-35) +6885885*a(n-36) +7947766*a(n-37) +9619088*a(n-38) +10500451*a(n-39) +7379338*a(n-40) +4822110*a(n-41) +1762915*a(n-42) -628945*a(n-43) +2651452*a(n-44) +1467499*a(n-45) +174173*a(n-46) +300100*a(n-47) -1711642*a(n-48) -540748*a(n-49) +958090*a(n-50) -8087*a(n-51) -404816*a(n-52) +291351*a(n-53) -124343*a(n-54) -37128*a(n-55) +205244*a(n-56) -163174*a(n-57) +27184*a(n-58) +55353*a(n-59) -51052*a(n-60) +13942*a(n-61) +2972*a(n-62) -10778*a(n-63) +294*a(n-64) +812*a(n-65) -380*a(n-66) +92*a(n-67) +168*a(n-68) +32*a(n-69) for n>71

%e Some solutions for n=5

%e ..0..1..1..1. .0..1..0..0. .0..0..0..1. .0..0..1..1. .0..1..1..0

%e ..0..0..1..0. .1..1..0..1. .1..1..1..0. .0..1..0..1. .1..1..1..1

%e ..0..1..1..1. .0..0..1..1. .0..1..0..0. .0..0..0..1. .0..1..1..0

%e ..1..1..1..0. .0..0..0..0. .1..1..1..0. .0..1..1..0. .1..1..1..1

%e ..1..0..1..1. .1..0..0..1. .0..1..1..1. .0..0..0..1. .1..0..1..0

%Y Cf. A304959.

%K nonn

%O 1,1

%A _R. H. Hardin_, May 22 2018